top of page

Relativistic nanophotonics

The project is supported by the Swedish Research Council (VR) by a Research Environment Grant

Description:
Our ambitious objective is to push the frontiers of the shortest electron bunches by combining cutting-edge instrumentation and leading expertise in laser, plasma and optical physics. We will develop a fundamentally new source of electron bunches with properties tailored by our unique high intensity laser system, delivering quasi-single optical-cycle pulses that irradiate nanometer-sized targets. These targets will be positioned in vacuum without mechanical support using an optical trap and active stabilization. In order to understand the target suspension and the electron dynamics, state-of-the-art simulations will be performed.

Groundbreaking results are expected, among others entering the attosecond regime with relativistic electrons. This will open the way for novel time-resolved photography of electron dynamics, and for attosecond x-ray generation, with application in light-driven electronics, bio-medical structure determination, and next-level temporal metrology.

Picture11.jpg

Fig. A multi TW <5 fs laser pulse with strongly relativistic intensity impinging on a tungsten nanotip

​​Participants:
University of Gothenburg : Dag Hanstorp, dag.hanstorp@physics.gu.se
                                                Javier Marmolejo, javier.marmolejo@physics.gu.se

University of Gothenburg : Mattias Marklund, mattias.marklund@gu.se
                                                Arkady Gonoskov, arkady.gonoskov@physics.gu.se
                                                Thomas Blackburn, tom.blackburn@physics.gu.se
                                                Shikha Bhadoria, shikha.bhadoria@physics.gu.se

Umeå University : László Veisz, laszlo.veisz@umu.se
                                 Roushdey Salh, roushdey.salh@umu.se
                                 Aitor De Andres Gonzalez, aitor.de.andres@umu.se

                                 Sreehari Kaniyeri, sreehari.kaniyeri@umu.se

 

Publications:

Aitor De Andres, Shikha Bhadoria, Javier Tello Marmolejo, Alexander Muschet, Peter Fischer, Hamid Reza Barzegar, Thomas Blackburn, Arkady Gonoskov, DagHanstorp, Mattias Marklund, Laszlo Veisz; Unforeseen advantage of looser focusing in vacuum laser acceleration, Communications Physics 7:293 (2024).

https://doi.org/10.1038/s42005-024-01781-9

 

Ankit Dulat, Amit D. Lad, C. Aparajit, Anandam Choudhary, Yash M. Ved, Laszlo Veisz, and G. Ravindra Kumar; Single-shot, spatio-temporal analysis of relativistic plasma optics, Optica, Vol. 11, Issue 8,  pp. 1077-1084  (2024).

https://doi.org/10.1364/OPTICA.522870

 

C. Olofsson  and A. Gonoskov, Prospects for statistical tests of strong-field quantum electrodynamics with high-intensity lasers, High Power Laser Science and Engineering, Volume 11, e67 (2023).

https://doi.org/10.1017/hpl.2023.64

Alemayehu Nana Koya, Marco Romanelli, Joel Kuttruff, Nils Henriksson, Andrei Stefancu, Gustavo Grinblat, Aitor De Andres, Fritz Schnur, Mirko Vanzan, Margherita Marsili, Mahfujur Rahaman, Alba Viejo Rodríguez, Tlek Tapani, Haifeng Lin, Bereket Dalga Dana, Jingquan Lin, Grégory Barbillon, Remo Proietti Zaccaria, Daniele Brida, Deep Jariwala, László Veisz, Emiliano Cortés, Stefano Corni, Denis Garoli, Nicolò Maccaferri, Advances in ultrafast plasmonics, Applied Physics Reviews 10, 021318 (2023).

https://doi.org/10.1063/5.0134993

Aitor De Andres, Spencer W. Jolly, Peter Fischer, Alexander A. Muschet, Fritz Schnur, and Laszlo Veisz; Spatio-spectral couplings in optical parametric amplifiers, Optics Express Vol. 31, 12036 (2023).

https://opg.optica.org/oe/fulltext.cfm?uri=oe-31-8-12036&id=528569

Christoffer Olofsson and Arkady Gonoskov, Attaining a strong-field QED signal at laser-electron colliders with optimized focusing, Phys. Rev. A 106, 063512 (2022).
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.106.063512

Javier Tello Marmolejo, Adriana Canales, Dag Hanstorp, and Ricardo M´endez-Fragoso; Fano Combs in the Directional Mie Scattering of a Water Droplet, Phy. Rev. Lett. 130, 043804 (2023).

https://doi.org/10.1103/PhysRevLett.130.043804

Alexander A. Muschet, Aitor De Andres, N. Smijesh, and Laszlo Veisz; An Easy Technique for Focus Characterization and Optimization of XUV and Soft X-ray Pulses, Appl. Sci. 12, 5652 (2022).

https://doi.org/10.3390/app12115652

 

A. A. Muschet, A. De Andres, P. Fischer, R. Salh, and L. Veisz; Utilizing the temporal superresolution approach in an optical parametric synthesizer to generate multi-TW sub-4-fs light pulses, Optics Express 30, 4374 (2022).

https://doi.org/10.1364/OE.447846

Vojtěch Horný and Laszlo Veisz; Generation of single attosecond relativistic electron bunch from intense laser interaction with a nanosphere, Plasma Phys. Control. Fusion, 63, 125025 (2021).

https://doi.org/10.1088/1361-6587/ac2996

 

Javier Tello Marmolejo, Mitzi Urquiza-González, Oscar Isaksson, Andreas Johansson, Ricardo Méndez-Fragoso, Dag Hanstorp; Visualizing the electron’s quantization with a ruler, Scientific Reports , 11, 10703 (2021).

https://www.nature.com/articles/s41598-021-89714-2

Jonas Björklund Svensson, Diego Guénot, Julien Ferri, Henrik Ekerfelt, Isabel Gallardo González, Anders Persson, Kristoffer Svendsen, László Veisz, Olle Lundh; Low-divergence femtosecond X-ray pulses from a passive plasma lens, Nature Physics 17, 639–645 (2021).

https://doi.org/10.1038/s41567-020-01158-z

Elena Panova, Valentin Volokitin, Evgeny Efimenko, Julien Ferri, Thomas Blackburn, Mattias Marklund, Alexander Muschet, Aitor De Andres Gonzalez, Peter Fischer, Laszlo Veisz, Iosif Meyerov, and Arkady Gonoskov; Optimized Computation of Tight Focusing of Short Pulses Using Mapping to Periodic Space, Appl. Sci. 11 (3), 956 (2021).

https://doi.org/10.3390/app11030956

Tamas Nagy, Peter Simon and Laszlo Veisz; High-energy few-cycle pulses: post-compression techniques, Advances in Physics: X, 6:1 1845795 (2021).

https://doi.org/10.1080/23746149.2020.1845795

Javier Tello Marmolejo, Benjamin Björnsson, Remigio Cabrera-Trujillo, Oscar Isaksson, and Dag Hanstorp; Visualization of spherical aberration using an optically levitated droplet as a light source;  Optics Express, Vol. 28, 30410 (2020).

https://doi.org/10.1364/OE.402759

J. Götzfried, A. Döpp, M. F. Gilljohann, F. M. Foerster, H. Ding, S. Schindler, G. Schilling, A. Buck, L. Veisz, and S. Karsch;  Physics of high-charge electron beams in laser-plasma wakefields, Phys. Rev. X 10, 041015 (2020).

https://journals.aps.org/prx/abstract/10.1103/PhysRevX.10.041015

Qingcao Liu, Lennart Seiffert, Frederik Süßmann, Sergey Zherebtsov, Johannes Passig, Alexander Kessel, Sergei A. Trushin, Nora G. Kling, Itzik Ben-Itzhak, Valerie Mondes, Christina Graf, Eckart Rühl, Laszlo Veisz, Stefan Karsch, Jessica Rodriguez-Fernandez, Mark I. Stockman, Josef Tiggesbäumker, Karl-Heinz Meiwes-Broer, Thomas Fennel, and Matthias F. Kling; Ionization-Induced Subcycle Metallization of Nanoparticles in Few-Cycle Pulses, ACS Photonics, 7 (11), 3207-3215 (2020).

https://doi.org/10.1021/acsphotonics.0c01282

D. E. Cardenas, S. Chou, E. Wallin, J. Xu, L. Hofmann, A. Buck, K. Schmid, D. E. Rivas, B. Shen, A. Gonoskov, M. Marklund, and L. Veisz; Electron bunch evolution in laser-wakefield acceleration, Phys. Rev. Accel. Beams 23, 112803 (2020).

https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.23.112803

Organization.png

Fig. Illustration of relativistic nanophotonics. An ultra-intense and short laser pulse (red) irradiates a nanomaterial (bright white spot) and generates electron bunches and X-ray radiation (blue) with attosecond duration.

bottom of page