top of page

Relativistic nanophotonics

The project is supported by the Swedish Research Council (VR) by a Research Environment Grant

Our ambitious objective is to push the frontiers of the shortest electron bunches by combining cutting-edge instrumentation and leading expertise in laser, plasma and optical physics. We will develop a fundamentally new source of electron bunches with properties tailored by our unique high intensity laser system, delivering quasi-single optical-cycle pulses that irradiate nanometer-sized targets. These targets will be positioned in vacuum without mechanical support using an optical trap and active stabilization. In order to understand the target suspension and the electron dynamics, state-of-the-art simulations will be performed.

Groundbreaking results are expected, among others entering the attosecond regime with relativistic electrons. This will open the way for novel time-resolved photography of electron dynamics, and for attosecond x-ray generation, with application in light-driven electronics, bio-medical structure determination, and next-level temporal metrology.


Fig. Illustration of relativistic nanophotonics. An ultra-intense and short laser pulse (red) irradiates a nanomaterial (bright white spot) and generates electron bunches and X-ray radiation (blue) with attosecond duration.

University of Gothenburg : Dag Hanstorp,
                                              Javier Marmolejo,

University of Gothenburg : Mattias Marklund,
                                              Arkady Gonoskov,
                                              Thomas Blackburn,
                                               Julien Ferri,
                                              Shikha Bhadoria,

Umeå University : László Veisz,
                              Roushdey Salh,
                              Aitor De Andres Gonzalez,


Aitor De Andres, Spencer W. Jolly, Peter Fischer, Alexander A. Muschet, Fritz Schnur, and Laszlo Veisz; Spatio-spectral couplings in optical parametric amplifiers, Optics Express Vol. 31, 12036 (2023).

Christoffer Olofsson and Arkady Gonoskov, Attaining a strong-field QED signal at laser-electron colliders with optimized focusing, Phys. Rev. A 106, 063512 (2022).

Javier Tello Marmolejo, Adriana Canales, Dag Hanstorp, and Ricardo M´endez-Fragoso; Fano Combs in the Directional Mie Scattering of a Water Droplet, Phy. Rev. Lett. 130, 043804 (2023).

Alexander A. Muschet, Aitor De Andres, N. Smijesh, and Laszlo Veisz; An Easy Technique for Focus Characterization and Optimization of XUV and Soft X-ray Pulses, Appl. Sci. 12, 5652 (2022).


A. A. Muschet, A. De Andres, P. Fischer, R. Salh, and L. Veisz; Utilizing the temporal superresolution approach in an optical parametric synthesizer to generate multi-TW sub-4-fs light pulses, Optics Express 30, 4374 (2022).

Vojtěch Horný and Laszlo Veisz; Generation of single attosecond relativistic electron bunch from intense laser interaction with a nanosphere, Plasma Phys. Control. Fusion, 63, 125025 (2021).


Javier Tello Marmolejo, Mitzi Urquiza-González, Oscar Isaksson, Andreas Johansson, Ricardo Méndez-Fragoso, Dag Hanstorp; Visualizing the electron’s quantization with a ruler, Scientific Reports , 11, 10703 (2021).

Jonas Björklund Svensson, Diego Guénot, Julien Ferri, Henrik Ekerfelt, Isabel Gallardo González, Anders Persson, Kristoffer Svendsen, László Veisz, Olle Lundh; Low-divergence femtosecond X-ray pulses from a passive plasma lens, Nature Physics 17, 639–645 (2021).

Elena Panova, Valentin Volokitin, Evgeny Efimenko, Julien Ferri, Thomas Blackburn, Mattias Marklund, Alexander Muschet, Aitor De Andres Gonzalez, Peter Fischer, Laszlo Veisz, Iosif Meyerov, and Arkady Gonoskov; Optimized Computation of Tight Focusing of Short Pulses Using Mapping to Periodic Space, Appl. Sci. 11 (3), 956 (2021).

Tamas Nagy, Peter Simon and Laszlo Veisz; High-energy few-cycle pulses: post-compression techniques, Advances in Physics: X, 6:1 1845795 (2021).

Javier Tello Marmolejo, Benjamin Björnsson, Remigio Cabrera-Trujillo, Oscar Isaksson, and Dag Hanstorp; Visualization of spherical aberration using an optically levitated droplet as a light source;  Optics Express, Vol. 28, 30410 (2020).

J. Götzfried, A. Döpp, M. F. Gilljohann, F. M. Foerster, H. Ding, S. Schindler, G. Schilling, A. Buck, L. Veisz, and S. Karsch;  Physics of high-charge electron beams in laser-plasma wakefields, Phys. Rev. X 10, 041015 (2020).

Qingcao Liu, Lennart Seiffert, Frederik Süßmann, Sergey Zherebtsov, Johannes Passig, Alexander Kessel, Sergei A. Trushin, Nora G. Kling, Itzik Ben-Itzhak, Valerie Mondes, Christina Graf, Eckart Rühl, Laszlo Veisz, Stefan Karsch, Jessica Rodriguez-Fernandez, Mark I. Stockman, Josef Tiggesbäumker, Karl-Heinz Meiwes-Broer, Thomas Fennel, and Matthias F. Kling; Ionization-Induced Subcycle Metallization of Nanoparticles in Few-Cycle Pulses, ACS Photonics, 7 (11), 3207-3215 (2020).

D. E. Cardenas, S. Chou, E. Wallin, J. Xu, L. Hofmann, A. Buck, K. Schmid, D. E. Rivas, B. Shen, A. Gonoskov, M. Marklund, and L. Veisz; Electron bunch evolution in laser-wakefield acceleration, Phys. Rev. Accel. Beams 23, 112803 (2020).

bottom of page